GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites.

نویسندگان

  • Jason R Chalifoux
  • Adam G Carter
چکیده

Although primarily studied at the cell body, GABA(B) receptors (GABA(B)Rs) are abundant at spines and dendrites of cortical pyramidal neurons, where they are positioned to influence both synaptic and dendritic function. Here, we examine how GABA(B)Rs modulate calcium (Ca) signals evoked by action potentials (APs) in spines and dendrites of layer 2/3 pyramidal neurons in mouse prefrontal cortex. We first use two-photon microscopy to show that GABA(B)Rs inhibit AP Ca signals throughout the entire dendritic arbor of these neurons. We then use local pharmacology and GABA uncaging to show that dendritic GABA(B)Rs also decrease the input resistance, shorten the AP afterdepolarization, and generate inhibitory postsynaptic potentials. However, we find that these electrophysiological effects recorded at the cell body do not correlate with the inhibition of AP Ca signals measured in spines and dendrites. Instead, we use voltage-clamp recordings to show that GABA(B)Rs directly inhibit several subtypes of voltage-sensitive calcium channels (VSCCs) in both spines and dendrites. Given the importance of VSCC-mediated Ca signals for neuronal function, our results have implications for the functional role of dendritic GABA(B)Rs in the prefrontal cortex and throughout the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines

The roles of voltage-sensitive sodium (Na) and calcium (Ca) channels located on dendrites and spines in regulating synaptic signals are largely unknown. Here we use 2-photon glutamate uncaging to stimulate individual spines while monitoring uncaging-evoked excitatory postsynaptic potentials (uEPSPs) and Ca transients. We find that, in CA1 pyramidal neurons in acute mouse hippocampal slices, CaV...

متن کامل

Repulsion and Attraction with Sema3D

Calcium entry into the dendritic spines of excitatory neurons is important for many forms of synaptic plasticity. In this issue, Hoogland and Saggau continue efforts to inventory the calcium channels that function in dendritic spines. They evoked backpropagating action potentials at the soma of CA1 neurons in rat hippocampal slices and recorded calcium transients in basal dendrites and spines u...

متن کامل

Impact of subthreshold membrane potential on synaptic responses at dendritic spines of layer 5 pyramidal neurons in the prefrontal cortex.

Glutamatergic inputs onto cortical pyramidal neurons are received and initially processed at dendritic spines. AMPA and NMDA receptors generate both synaptic potentials and calcium (Ca) signals in the spine head. These responses can in turn activate a variety of Ca, sodium (Na), and potassium (K) channels at spines. In principle, the roles of these receptors and channels can be strongly regulat...

متن کامل

Different calcium sources control somatic versus dendritic SK channel activation during action potentials.

Small-conductance calcium-activated potassium (SK) channels play an important role in regulating neuronal excitability. While SK channels at the soma have long been known to contribute to the medium afterhyperpolarization (mAHP), recent evidence indicates they also regulate NMDA receptor activation in dendritic spines. Here we investigate the activation of SK channels in spines and dendrites of...

متن کامل

Two modes of GABAB: specific localized inhibition and global network inhibition.

Editor's Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see Review of Chalifoux and Carter GABA B receptors are inhibitory me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 11  شماره 

صفحات  -

تاریخ انتشار 2011